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SUMMARY

T

The Earth's gravitational potential is usually expressed as an infinite
series of harmonics, and the values of harmonic coefficients of order 15 and 30
can be determined most accurately by analysis of satellite orbits which experi-
ence 15th-order resonance. The results from two recent resonance analyses, for
1965-09A and 1968-70A, have here been added to those previously available, to
produce an improved evalualion of 44 coefficients of order 15 and degree 15-36,
and 12 coefficients of order 39’§QQ7gven degree 30,32,...40.

<d's) /

Compared with previous r&8Tlts, the new evaluation shows a great improve-
ment in the standard deviationsﬁof many of the 15th-order coefficients of even
degree, thanks largely to the contribution of 1965-09A at inclination 31.8f; for
the coefficients of degree 24, 26, 28 and 30, the s&tandard deviation {saY has
been reduced by a factor of 3.1 on average; and for degree 32, 34 and 36 by a
factor of 1.4 on average. For the other coefficients - those of 30th order, and
odd-degree 15th order;—’the changes are relatively small. 1In the new 15th-order
solution, all the 30 coefficients of degree 15-29 have sd ¥ 2.0 x 10~ T\and the
average sd of these 30 values is equivalent to an error in'geoid height of 0.7 cm.
Comparison of our values with those in comprehensive geoid' models, which usually
have larger sd, lead us to conclude that, for orders 15 and 30, the nominal Y

standard deviations of the comprehensive models are quite realistic. * . .
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1 INTRODUCTION

Our previous evaluation1 of individual harmonic coefficients of order 15
and 30 from analysis of 25 satellites at 15th-order resonmance can now be improved
in four ways. First, the recent analysis2 of the resonant variation in eccen-
tricity for 1965-09A, at inclinatiom 31.80, gives a much stronger hold on coef~
ficients of even degree for degree 224; previously the lowest inciination used
was 43°. Second, the new and accurate analysis3 of 1968-70A at inclination 560,
which includes many Hewitt camera observations, provides further good values of
lumped harmonics of order 15 and 30. Third, we have corrected a mistake in the
value of one of the lumped 30th-order S harmonics previously used. The fourth
imptovementa, important in principle though hardly significant numerically, is
the replacement of an approximation for the functions Gqu by more accurate
values from the computer program GQUAD.

The format of this Report is similar to that of its predecessor‘: sections
2 to 4 offer a very brief outline of the notation, the data used and the method
of solution. Sections 5 to 9 give the solutions for the harmonic coefficients
obtained on taking account of the first three of the four improvements mentioned
above, In section 10 we take account of the fourth improvement = the use of more
accurate forms for the G functions ~ and produce revised solutions, given in

Tables 14, 15 and 17.
2 NOTATION

The longitude—dependent part of the geopotential at an exterior point

(r, 6, A\) can be written in normalized form5 as

o 2 . . . ) )
Z z (;) Pl(cos 6){CRm cos mx + ng sin m)\}Ngm , (@D

=2 m=1

ni{c

where r 1is the distance from the Earth's centre, 0 is co-latitude, \ is
longitude (positive to the east), u 1is the gravitational constant for the Earth
(398600 km>/s2) and R is the Earth's equatorial radius (6378.1 km). The

P?(cos 6) are the associated Legendre functions of order m and degree &£ , and

CEm and §2m are the normalized tesserzl harmonic coefficients: only those of
order m = 15 and m = 30 are relevant here. The normalizing factor Nlm is
given by5
2 2028 + 1)(L - m)!
New = T+ o ' @




Note that 2 >m , so that, if m = 15, then 2 = 15,16,17,...

When a satellite passes slowly through 15th-order resonance as its orbit
contracts under the influence of air drag, it is possible to analyse the vari-

ations in some orbital parameters and tﬁ determine accurate values of 'lumped'
s

-1
geopotential harmonics, denoted by Cm and Sm , which are linear functions

of the individual coefficients Clm and Slm . By analysing both inclination

i and eccentricity e , good values can usually be obtainea for three pairs of
lumped harmonics of 15th order, for (q,k) = (0,1), (1,0) and (-~1,2) . The
first of these is derived by analysis of the changes in inclination, and the
linear equation for the lumped harmonic in terms of the individual coefficients

may be written

_0’1

B 0,1=
Cis5 = G595 % Q

17,15 ¥ Q9 © e )

0,1=
19,15 * Q1 Coq 45

0,1

and similarly for S . The Q, coefficients here are functions of inclination,

eccentricity and semi major axis, but may be taken as constant for a particular
’

15
different inclinations, the resulting equations of the form (3) can be solved to

satellite passing through resonance. By evaluating C for satellites at many

determine the individual coefficients C of odd degree (and similarly for

2,15
S).
The coefficien%so Ez 15 of gven degree are linked with the other two
— » =" 1,
lumped harmonics, C15 and C15 , via the equations
1,0
= .= 1,02 1,0=
s 16,15 * Qg Cig,15 * Yo 20,15 * -
(4)
-1,2
= _ = -1,2= -1,2=
Cis Ci6,15 % Ug” Cig,15 * o’ C20,15 * -

and similarly for S . When these even-degree lumped harmonics, which are derived
chiefly from the changes in orbital eccentricity, are evaluated for satellites at
a variety of inclinations, the equations (4) can be solved for the individual

coefficients of even degree.

Analysis of 15th-order resonagcg may also yield valuvs of lumped harmonics

. el | =v7
of order 30, of which C30 and 530

from the changes in orbital inclination. The appropriate linear equations for

are the best determined, being obtained

s%0

these lumped harmonics are
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_0,2
c

. 0,2 0,2=
30 - 30,30 * %2 %32,30 * 934 C34,30 * o (5

and similarly for S . Thus values of the individual coefficients of order 30
and even degree are obtainable if values of these lumped harmonics can be
determined for satellites over a wide enough range of inclination. For further

details of the theory, see Ref 4.
3 THE DATA
3.1 Introduction

We shall be using results from analysis of the orbits of 26 satellites
which have experienced 15th-order resonance. As two separate analyses are
included for one satellite (1964-52B), we have 27 equations of type (3) for the
odd-degree C coefficients of order 15 (and 27 for S ), obtained from analysis
of the inclination of each satellite. These analyses also yielded 11 equations

of type (5) for 30th-order C coefficients of even degree {(and 11 for S ).

Analyses of eccentricity have been made for 20 of the 26 satelliteg (again

6 »
15
, 1e a total of 42 equations of the type (4) for C coefficients

with two for 1964-52B), giving 21 equations for the lumped harmonic and

=71

21 for C15
of 15th order and even degree (and 42 for S ).

All but two of the resonance analyses have been described previously. The

new ones are discussed in sections 3.2 and 3.3.

Table 1 gives the values of (E,§)?;' used in the solutions, together with
the normalized inclination function Flmp for £ =m =15, whfre 2p = £ -k .
It is useful to multiply the values of the lumped harmonics by F15’15’7 before
plotting the results graphically, so as to avoid large changes in the values
between different inclinations. Values of FC and FS are therefore also

recorded in Table 1.

- =1 - - -1,2
Table 2 gives the values of (C,S)1; and (C,S)15' with the appropriate

F . The 30th-order lumped harmonics are given later (Table 7).

3.2 Pegasus 1, 1965-09A

The variation of inclination for this satellite at resonance was success-
fully analysed some years ago7, but no useful results could be obtained at that
time from the changes in eccentricity. In our previous determination of even-
degree harmonics of order 15, the chief weakness was the lack of any satellite

. . . o . . . .
at inclination lower than 437, Orbits at lower inclinations are much more strongly
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affected by harmonic coefficients of high degree, and are therefore powerful in
determining the values for high degree. The inclination of 1965-09A was 31.80,
and an orbit determination was undertaken with the aim of analysing the vari-
ations in eccentricity at resonance. Orbits were determined2 at 73 epochs from
4057 observations, chiefly US Navy, at the times when the effects of resonance
on eccentricity were expected to be greatest - between November 1973 and
September 1974 (37 orbits), and between April 1975 and January 1976 (36 orbits).
Good values of the four relevant lumped harmonics were determined and are given
in Table 2, with the standard deviations increased as specified in Ref 2, to

allow for the neglect of harmonics of degree greater than 36.

3.3 Cosmos 236, 1968-70A

This satellite, at an orbital inclination of 56.10, passed slowly through
i15th-order resonance between July 1983 and October 1984, and the orbit has
recently3 been determined at 77 epochs by A.N. Winterbottom from 4744 obser-
vations, including 284 Hewitt camera observations. Well-defined values were
determined for the six relevant lumped harmonics of 15th order and for two of
30th order; so this satellite contributes to all the solutions, for 15th and

30th order.

4 METHOD OF SOLUTION FOR 15th ORDER

The method is a modified weighted-least-squares, with extra equations and
with rules for relaxing the standard deviations of ill-fitting values of the

lumped harmonics.

The main equations for 15th order are of the form (3) or (4), and the extra

equations are constraints of the form
6“5 - 0+ 107078, (6)

and similarly for S . These extra equations express the expectation5 that
62’15 will be of order 10_5/12 , as is confirmed in algcneral way by the Goddard
Farth Model 10C (Ref 8). As in our previous evaluation , we discarded all the
constraint equations for & < 23 , because these coefficients were so well
determined that the constraints seemed unhelpful: the equations embody the
instruction 'keep this coefficient as small as possible', an instruction which
is undesirable when (for example) we have determined that 109615’15 = -20.4 £ 0.4,
so that its value is very unlikely to be numerically less than 18 or 19. The con-

straint equations were retained for % > 24 , with the proviso that, if the value

<%0

—

-3 v
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for the coefficient of degree £ exceeded 10_5/9,2 , the constraint was relaxed
until the weighted residual was 1.0. The occasions when this happened are indi-

cated in the tables giving the residuals.

The rules for the relaxation of standard deviations on ill-fitting values
of the lumped harmonics were the same as adopted previously. As usual, the
weighted residual is defined as the residual divided by the assumed standard
deviation. If the weighted residual exceeds a chosen value - and 1.4 proved to
be a convenient choice - the standard deviation is doubled. If the weighted
residual still exceeds 1.4, the standard deviation is doubled again. Occasion-
ally the weighted residual even then exceeds 1.4, and as a last resort the
standard deviation is increased to ten times its original value. Relaxation by
a factor of 10 is tantamount to rejection, but there is no harm in retaining the
values, because their weighted residuals are near the average (which is 0.8).

The relaxations necessary under these rules are indicated in Tables 1, 2 and 7.

Though successful in the past, this procedure is empirical, and there can
be no guarantee that the solution obtained will be stable or unique. Despite

the past successes, we did have problems here with the 15th~order harmonics of

odd degree, in that several somewhat different fittings were possible: we chose .

the one that was least oscillatory.

5 SOLUTION FOR COEFFICIENTS OF ORDER 15 AND ODD DEGREE

As before, we have evaluated 11 coefficients, of degree 15,17,19,...35.
There are three reasons for this choice. First, the Q coefficients are large
up to degree 35 for some of the low-inclination satellites. Second, the measure
of fit € improves for up to 11 coefficients, but is not appreciably better for
12. Third, this choice facilitates comparisons with two comprehensive models of
the gravity field that go to degree 36, namely GEM 10B (Ref 8) and the European
GRIM3-L1 (Ref 9).

The solution for the odd-degree coefficients of order 15 is given, with

standard deviations, in Table 3.

- . . . . o1
For the C coefficients in Table 3, comparison with our previous solution

shows only small changes, always less than 1 standard deviation. However, the
for 1968-70A, namely (-213.5 % 5.4) x 10_9, was somewhat in

new value of 01;
conflict with the existing value for 1963-53B, namely (-233.4 % 3.3) x 10_'9 at
nearly the same inclination. It was necessary to double the standard deviation
for both, as shown in Table 1, and consequently the standard deviations of the

values in Table 3 are slightly larger than before, on average 117 higher. The

Y v




new value of ¢ (where 52 is the sum of the squares of the weighted residuals
divided by the number of degrees of freedom) is 0.89, as against 0.79 previously.
(We suspected previously that the standard deviation for 1965-53B was too small,
but there was no justification for changing it, as it satisfied the procedure

for solution that we specified.) The new fitting is shown graphically in Fig 1,

where the lumped harmonics are multiplied by F .
15,15,7

Table 3
Solution for odd-degree 61’15 and 52’15

2 ’0962,15 10952’15

15 1 =20.5 ¢ 0.4 -6.7 + 0.5
17 6.5 £ 0.6 3.4 £ 0.6
9| -16.5 £ 0.7 | -14.4 £ 0.7
21 18.5 £ 0.5 12.3 £ 1.1
23 21.4 £ 1.1 -1.6 £ 1.5
25 -5.3 £ 1.8 2.6 + 2.3
27 -3.7 £ 1.4 9.7 £ 2.0
29 -7.9 + 1.3 -5.7 £ 1.5
31 16.6 £ 2.5 -2.7 £ 3.4
33 -1.8 £ 2.8 | -10.0 + 3.5
35 -8.2 ¢ 3.7 1.1 £ 4.6

For the S coefficients in Table 3, the solution was not straightforward,
because it was possible to arrive at different fittings depending on the order in
which the relaxations were made. After many trials, we chose the solution which
was least oscillatory: it is shown in Fig 1 and is smoother than the fitting in
Ref 1. The uncomfortable feature of Ref 1 was a relaxation by a factor of 10 for
1965-53B. This 'rejection’ is not now acceptable, because the value is given
some support by the new result from 1968-70A: the new solution uses both satel-
lites, but with standard deviation quadrupled. The oprly other change was a
further doubling of the standard deviation on 1979-82A, for which the original
fitting7 was unsatisfactory. The alternative solutions involved keeping smaller
standard deviations for 1965-53B and 1968-70A at the expense of inducing
oscillations elsewhere and requiring relaxation of other apparently accurate

values (eg 1963-24B).

— ~— 1wy
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The new S solution of Table 3 has larger standard deviations than the

old, on average 107 larger, and the value of € is 0.90, as compared with 0.82
previously. The new values of the S coefficients differ from the previous set
by 0.8 sd on average (using the new standard deviation as the measure). The

largest change is 1.4 sd for 531 15 and the largest change among the early
, 15

9

coefficients is for which goes from (10.8 % 0.9) x 10~ to

9

o S)1,15
(12.3 £ 1.1) x 1072,

Table &

Weighted residuals in the equations for odd-degree harmonics

Satellite equations Constraint equations
7 7 L
. i 0,1 ¢+ 0,1 = =
Satellite | = *  z° L C S
{ Ciq | S5 2,15 2,15

65-09A4  -0.08 | 0.18 | 25 | 0.33 | -0.16
69-68B 0.34 | -0.03 || 27 0.27 -0.71
64-84A i -0.39 | -0.,21 || 29 0.66 0.48
79-82A 0.15 0.97 || 31 | -1.00R 0.26
71-30B -0.75 | -0.19 || 33 0.19 1.00R
74=34A 0.47 | -0.05 || 35 1.00 -0.14
71-588 0.84 0.86
62-15A -1.37 0.43
65-53B -0.79 | -1.02
68-70A 1.10 | -1.40
63-24B 0.88 0.70
70-874A -1.12 | -1.20
65-14A 0.77 | -0.71
77-12B 0.88 0.27
71-106A -0.90 0.64
71-10B -0.59 0.95
71-18B -0.99 0.91
70-111A -0.53 0.06
71-13B 0.72 | -0.71
77-958 0.98 0.97
67-424A 0.07 | -0.55
70-194 0.15 1 1.19
67~73A | 0.11 1} 0.10
71-54A © =0.04 1 0.01
64-52B(H) - -0.15 ! 1.14
64-52B(B) -0.70 | .01
66-63A -1.18 | -0.81

The weighted residuals for each lumped harmonic in the solution, and for
the constrairt equations, are given in Table 4. The symbol 'R' indicates that
the constraint 10_5/22 was relaxed to give a weighted residual of 1.0, In

accordance with the rules specified in section 4, the standard deviations were
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relaxed to ensure that none of the weighted residuals exceeded 1.4 (or 1.0 for

the constraint equations). For 1964-52B the symbols (H) and (B) refer to the

two analysts, Hiller1o and Boulton11’12.

Fig 1 shows the fittings graphically, with the curves given by GEM 10B

(Ref 8) for comparison.
Further comments on the solutions will be found in section 7.

6 SOLUTION FOR COEFFICIENTS OF ORDER 15 AND EVEN DEGREE

As with the coefficients of odd degree, and for the same reasons, we have
evaluated 1) coefficients of even degree 16,18,20,...36 . As mentioned in
section 3, there are 42 equations of type (4) and there are also seven constraint
equations of type (6). Thus we have 49 equations for the C coefficients, and

49 for the S coefficients. The solution is given in Table 5.

Table 5
Solution for even-degree EQ,IS and 51,15

2 10961,15 109§‘L,15
16 | -13.2 £+ 1.2 | -26.5 ¢ 0.8
18 | =41.5 £ 1.3 1 -17.2 £ 0.9
20 | -23.3 £ 1.1 -1.9 ¢+ 0.9
22 23.3 £ 1.4 6.7 £ 1.2
24 1.3+ 1.6 | -23.5 % 1.4
26 | -14.7 £ 1.7 5.2 ¢ 1.5
28 | -10.7 £ 1.6 1.0 1.4
30 -8.5 ¢t 2.5 l -14.9 ¢+ 1.7
32 ] 19.7+4.1 1 2.5+ 2.6
3 | -2.4 % 4.1 | 14.0 £ 3.2 |
36 10.7 & 4.5 -9.2% 2.9

A preliminary new solution for even-degree coefficients was derived in
Ref 2 by adding the results from 1965-09A. The further addition of the four
lumped harmonics from 1968-70A considerably modifies this preliminary solution,
so we shall ignore it and refer back to the 'previous solution' of Ref 1, as for

the odd-degree coefficients.

Table 5 shows that, for the higher-degree harmonics, the new solution has

much smaller standard deviations than the previous solution, due largely to the

$%0
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new results from 1965-09A at low inclination (31.8%°). For the coefficients of
degree 24-30, the standard deviations have been reduced by a factor of 3.1 on
average; for degree 32-36 the improvement is by a factor of 1.4. Consequently,
if we loosely define 'well-determined' values as those with standard deviation
€1.7 x 10_9 (equivalent to an error less than about 1 cm in geoid height), the
well-determined values now extend up to degree 28, instead of up to degree 20 as

before. This is a considerable advance on our previous evaluation.

The new fittings are shown graphically in Figs 2 and 3, and the weighted
residuals for the 84 lumped harmonics are given in Table 6. The value of ¢ is

0.92 for C , and 0.83 for S .
Table 6

Weighted residuals in the equations for even—degree harmonics

T
Satellite equations Constraint equations
) 1,0 ~1,2 1,0 -1,2 - -
Satellite = = s L C S
s Cis S5 5,5 2,15 2,15

65-09A 0.76 ~-0.08 0.19 [ -0.17 | 24 0.07 1.00R
79-82A -0.15 i =0.40 | -0.19 1.02 ] 26 1.00 -0.35
71~30B 0.33 | -1.27 | -0.63 | 0.90 | 28 | 0.84 | -0.08
74=34A 0.55 | ~1.31 | -0.29 0.24 | 30 0.76 1.00R
71-58B -1.11 = -0.75 0.92 | -0.54 § 32 | -1.00R | -0.25
62-154 0.47 1.20 0.89 |, -0.00 ! 34 0.27 -1.00R
65-53B 0.72 ¢ 1.05 | 0.14 i 0.15 | 36 | -1.00R 1.00R
68-70A 1.31 : -1.01 | ~0.88 . 0.82
63-24B -1.30 ; 1.00 | -0.09 © 1.07
65-14A -0.02 | 0.35 { -0.32  -0.19
71-106A -0.49 ; -1.18 | -0.61 : 0.43
71-10B -1.09 | 0.10 | -0.10 ; 1.02 |
70-1114 0.21 -0.21 ! -0.77 -t1.31
71-13B ! -0.56 0.40 0.01  0.27
77-95B I 0.78 © -0.09 0.99 ' -0.12
67-42A ' -0.88 ~1.26 , -0.05 =-1.02
70-194 0.74 -0.34 | 1.31 -0.89
67-73A -0.31 -0.83 ! 1,22 -0.70
71-54A -0.35 0.52 | -0.88 0.22
64-52B(H) | -1.12 1.35 | 0.60 ~-1.01
64-52B(B) ' -0.79 -0.72 - -1.30 -0.36

In the solution for the C coefficients, it was necessary to relax the

15
caution, we decided to keep the doubled standard deviation for C1; from

accuracy of c for the new satellite, 1968-70A. Erring on theoside of

1965-09A recommended in Ref 2: a solution with this value unrelaxed is possible,

but leads to large values for the coefficients of degree 32 and 36.
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In the solution for the S coefficients it was obvious that the new value

£ S,
oL S5

factor of 10. (This is believed3 to result from difficulties in fitting the

from 1968-70A would not fit, and in the end it has to be relaxed by a

resonant variation in eccentricity for orbits of exceptionally low eccentricity,
e < 0.001.) Unfortunately, the residual for §]; from 1968-70A remained just
above the specified limit of 1.4 and so, under our rules, this value had to be

relaxed by a factor of 2. No other changes were needed.

The new solution in Table 5, as well as having much lower standard devi-
ations than before for the high-degree coefficients, shows some significant
changes in the numerical values of the coefficients. For degree 16-22, the
values are altered on average by only 0.4 sd, and none changes by more than

0.8 sd (where the standard deviation is that of the previous solution). The
largest change is for 622 5 which goes from (24.9 + 1.9) x IO—9 to

- ’
(23.3 + 1.4) x 10 9. For degree 24-36, the average chanpe is 1.3 sd and the

greatest is 2.1 sd: the larger changes are concentrated at the highest degrees,

where the values were, and still are, poorly detined. The change of 2.1 sd

occurs with 634 15 which goes from (7.9 % 4.9) ~ ‘0_9 to (=2.4 £ 4.1) = 10_9.
’

Fig 2 shows good agreement for C between the curves fitted to our values
and the curves from GEM 10B. In Fig 3 the CEM 10B curves for S agree well with
ours except at low inclinations, where the curve for CEM 10B is sure to be close

to zero because all the high-degree §Q 15 coetficients in GEM 10B are small;
Y -_

our curve, however, has to fit the rather large negative value of S]; near

i = 44° and exhibits quite a deep minimum there. As we showed in Fig 4 of Ref 1,

the curve for F§15’ , when moved to the right by 6% in inclination, almosL‘ )
== . . . P
coincides with that of FS1; . So there is a minimum in the curve for FS15

. . . o - . .
near inclination 39 - a minimum which is apparently uncalled for as there are

no values to provoke it: it can be regarded as a 'reflection' of the dip in
— ’ . .

I-‘S]q at inclinations near 44°,

1,0
S

o 15
44”7, which obviously influences the course of the curve. Its weighted residual

It is a pity that there is no independent check on the value of at
is small, -0.19, but we tried the effect of relaxing this standard deviation by
a factor of 10. The value of ¢ inevitably decreases, but the decrease is

surprisingly small, from 0.83 to 0.82, and there is stil® a deep minimum in

1,
FS15 N :
drop between 527 and 44 being 207 less. We concluded that we had no justifi-

. o L
near 1 = 447, although of course it is less pronounced than before, the

. . N ., C
cation for relaxing the standard deviation of the value at 44°.

$%0
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7 DISCUSSION OF THE 15TH~ORDER SOLUTIONS

Cur aim in these evaluations has been to derive reliable and accurate values
of 15th-order coefficients, firstly for their own sake, so as to establish their
values, and secondly so as to provide a test of comprehensive gravity

8,9,13,14

models , the accuracy of which is extremely difficult to assess because

of the complexity of the solutions.

It should be said first that when testing comprehensive gravity models it
is best to work with the values of the lumped harmonics, which constitute the

2 15,16

primary data: this procedure has been adopted by Klokocnik and Wagner‘7,

who have made the most illuminating analyses.

However, the individual coefficients should in principle be capable of
evaluation if lumped values are available over a wide enough range of incli-
nations. Why then do we need to relax a number of the standard deviations to

achieve good fittings?

The first answer to this question is that several of our 26 satellites were
either of rather high drag or had rather poorly-determined orbits, and we had no
hesitation in relaxing the accuracy of the values for these satellites when
necessary. Over-—accurate fitting of the orbital variatioms, giving lumped
harmonics with over-optimistic standard deviations, will inevitably occur by
chance in a proportion of analyses where the data is poor. The alternative to
relaxation would have been to remove the offending satellite altogether: but
this is virtually the same as the relaxation by a factor of 10 which was applied
when necessary, and, as it happened that such relaxations were never needed for
both the C and S coefficients, the complete removal of any satellite would
have removed some useful data. A good example is 1971-18B at inclination near
70° in Fig 1: the C wvalue is relaxed by a factor of 4 and is almost useless;
but the § wvalue in Fig 1 fills a gap in inclination and, when it was relaxed

as a trial, the fit was not altered, so that the value is prima facie reliable.

The second answer to the question is paradoxically the exact opposite of
the first: some of the lumped harmonics may be too accurate for a fitting with
only 11 covefficients. Imagine that we had highly-accurate lumped harmonics at
1° intervals in inclination. This would define the true variation with i .
which would probably turn out to be very irregular. Any attempt to fit the
variation with a set of 11 coeificients would be doomed to failure, and great
relaxations of many of the very small standard deviations would be essential to

achieve a credible fitting. More than 11 coefficients could of course be used
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in this imaginary scenario, but here we do not have that option (a) because we do
not have enough orbits, and (b) because coefficients of very high degree (>36)
have appreciable effects only on orbits at inclinations less than 300, of which
we have none. Using too many coefficients in our fitting would reduce the

reliability of the solution by introducing spurious oscillations.

To summarize these answers, we should expect to have to make relaxations
for orbits with high drag or poor data, where over-accurate fittings have arisen
by chance, and also for a few of the most accurate values which may not all be

amenable to a fitting with only 11 coefficients.

8 SOLUTION FOR COEFFICIENTS OF ORDER 30 AND EVEN DEGREE

8.1 Introduction

In our previous evaluation we had results from 9 satellites. With the
addition of 1968-70A we now have 10 satellites, and, as the orbital inclination
of 1968~70A is in a region where coverage was previously weak, the solution is

considerably strengthened.

In our previous evaluation we commented that the solution for the C
coefficients was very good, but that the solution for the S coefficients was
not satisfactory, with conflicting values of lumped harmonics at inclinations
near 60°. The source of this conflict has now been identified as an error in
sign in the value taken for the lumped harmonic §35 for 1963-24B at 58°

inclination.

8.2 The lumped harmonics and the equations to be solved

Table 7 gives the 11 values of the lumped harmonics on which the new solu-
tion is based. To these 11 equations of the form (5) we add, as usual, constraint
equations of the form

= ~5,2

C1’30 010 7/ €))
(and similarly for the S coefficients), so that we have 11 + N equations to
solve for N coefficients. As before, we relax (by a factor of 2 or 4 as
necessary) the standard deviations of lumped harmonics for which the weighted
residual in the solution exceeds 1.4, and we also make oie relaxation of the

10-5/2,2 to ensure that the weighted residual does not exceed 1.0.

<%0




17

4 x UOTIBTAIP PAPpUBRIS .}

7 x UOTIJIBTIA3P PABPUBIS x £ay

0°0l ¥ 0°¢l £°C 86 Z0$2°0 109 F 76 ¥lZ ¥ 6€ 89°86 | (8)4ZS-%961
€0l F6°6 0T F LS 7057°0 1y ¥ 8¢ 6'L F 82T 80°86 } (H)ETS~%961
9€°0 ¥ 82°Y 82°0 F 99" ¥~ SSLY0 SL°0 F00°6 | 85°0 F 18°6- | 12°06 V4S-1161
LL'y % LL'2- 00°Z ¥ $6°¢- ovevo | »0"11 7 0°g- 9'y F L'6- L1°08 VZYy-L961
98°0 F 96°1 €9'L ¥ €0°L 9652°0 €€ F09 S°S F 14T S0° 4L qgi-1461
€Ll ¥ 9071 921 ¥ S6°y 6L52'0 LAR 2 AL 6'% ¥ T°61 00" %L Vii1~0L61
£8°C T 0€°% L6°L F v6°€- 767£0°0 ¥08 F 66 LT ¥ 45- £8°69 g01~1£61
8l'L ¥ 67°2- €Y1 ¥ ¢8°C- 96190°0 6L F LE- £€C F 99- z0°59 V91-5961
€0°L ¥ 86°Z- SZ'L ¥ %5°0 9L110°0 88 F ¢Sz~ 901 ¥ 9Y 0Z°8% a42~£961
€€°L F 76°¢€- ¥6°0 ¥ 17°0- L17900°0 ¥TIT ¥ Y29~ 641 F yE- 80°9¢ VOL-8961
79°0 ¥ $9°0 €5°0 ¥ LSO 256000°0 169 ¥ 649 86¢ F L6S %9°06 Vye-9L61
ommq_.om.omm ot €71 *0E‘0E ol q_.om.omm 0fg o 0%, o) (8ap)

‘0 6 z‘0 -6 - 20 © %0 © T sariIeaes

‘o

L dT1qeL

omAm.ov soTuowary paduny 23133p-udAd JOo sanjep

$%0




18

When the C and S equations are solved for N coefficients, the values

of € are as follows, for 3 N< 6 .

N 3 4 5 6

¢ for C equations 1.47 1.06 | 0.99 | 0.88
¢ for S -equations 1.15 1.11 0.96 | 0.89

The 6~coefficient solutions are chosen, because & decreases substantially
between N =5 and N = 6 , and because the Q coefficients are quite large
up to 2 = 40 for 1974-34A and 1968-70A.

8.3 The 6-coefficient solution

The values obtained in the 6-coefficient solution are listed in Table 8,

with their standard deviations.

Table 8
Solution for even-degree C2,30 and 52,30

9 9

L 10 C£,30 10 81’30

30 -3.2 + 0.9 7.4 £ 1.0

32 -8.6 + 1.8 4.7 £ 1.7

34 | -13.3 £ 2.2 | -5.6 £ 2.4

36 ~3.7 £ 3.1 5.5 4.0

38 6.8 £ 3.2 3.8 4.0

40 4.6 £2.6| -4.0z 31

The residuals for each of the lumped harmonics and the constraint equations

are given in Table 9.

%0
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Table 9

Weighted residuals in the equations for 30th-order harmonics

Satellite equations Constraint equations
. 0,2 _0,2 . c 3
Satellite C30 530 2,30 2,30
74-34A 0.24 0.47 |30 0.29 -0.67
68-70A -0.63 | -1.28 |32 0.88 -0.48
63-24B 0.87 0.31 § 34 1.00R 0.64
65-14A 0.07 | -0.33 | 36 0.48 ~-0.72
71-10B -0.7 0.97 |38 | -0.99 -0.55
70-1114 -0.53 | -0.30 j40 | -0.74 0.65
71-13B 0.99 0.18
67-42A -1.00 | -1.13
71-54A 0.04 0.10
64-52B(H) 0.23 0.81 |
! 64~52B(B) 0.84 1.19
l t

Fig 4 shows the fitting of the lumped hez.monics, multiplied by the appro-
priate F factor, with the values from GEM 10B plotted as broken lines.

8.4 Discussion of the solution

The values for the C coefficients are close to those in the previous
solution, and the curve (Fig 4) fits the lumped harmonics very well, The largest
change in the value of an individual coefficient is for 540.15 , which changes
from (6.0 £ 2.8) to (4.6 £ 2.6) x 10—9. On average the standard deviations

decrease by 57.

We commented that the previous §$ solution was unsatisfactory, firstly
because the fitting was poor at inclinations between 55° and 700, and secondly
because it was necessary to relax the accuracy of the lumped harmonic from
1965-14A, although this satellite was thought to be more reliable than its
'competitor' 1971-10B. This conflict has been resolved by the reversal in the
sign of the lumped harmonic for 1963-24B: we much regret this error, which arose
from an unnoticed misprint in the original paper. The new fit for the §
coefficients is shown by a full line in Fig 4: the curve differs greatly from
the previous one at inclinations less than 700, but is scarcely changed for
inclinations greater than 70°, In the new fitting, it is satisfactory that the
lumped harmonic from 1965-14A has its standard deviation restored to the original
value (see Table 7); the standard deviation for 1971-10B has to be doubled, but
this satellite was expected to be less reliable. The fitting for S , though
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improved, is still not completely satisfactory because the new value from
1968-70A requires a doubled standard deviation and even then does not fit well.
Consequently, the standard deviations of the § values for degree 36,38 and 40
in Table 8 are appreciably worse than those for the C values: indeed, as

these three § values are also quite small, they cannot be regarded as determi-
nate. In the previous solution they were also small and indeterminate, so the
changes in these values are of no comsequence in themselves; but they do imply
ch;nges in the earlier coefficients which are significant. In particular,

_ . ] 9= .
1 -
10 532,30 is now 4.7 £ 1.7 instead of 0.6 £ 2,3 and 10 834’30 is now -5.6 * 2.4
instead of 5.4 t 2.9. The value of 830 30 is not significantly changed.
b4

8.5 Coefficients of 30th order and odd degree

In theory it is possible to derive lumped harmonics of order 30 and odd
degree from analysis of the eccentricity. In practice satellites of very low
drag are needed to ensure that unmodelled atmospheric perturbations do not spoil
the fitting. So far only three satellites have yielded values of these coef-
ficients ~ 1971-54A, 1965-14A and 1968-70A - and this is not enough to allow

evaluation of individual coefficients.

9 COMPARISONS WITH VALUES IN COMPREHENSIVE GEQOPOTENTIAL MODELS

9.1 Coefficients of 15th order

Several comprehensive geopotential models, such as Rapp's 1981 model13 and
GRIM3-L1 (Ref 9), have utilized our previcus values of 15th-order coefficients; so
comparisons are not helpful. However, it is believed that GEM 10B and the recent
GEM-T1 are independent of our values; so their accuracy can be tested if our
values are the more accurate. The nominal accuracy of GEM-T1 is given14 as
between 3 and 5 x 10-9 for most of the relevant coefficients, whereas our standard
deviations do not exceed 1.5 x 10-9 up to degree 23; so a comparison seems worth
making and is shown in Table 10. For degree 15-23, the mean difference between
our 18 values and the corresponding values in the GEMs is 3.1 x 10—9 for GEM 10B
and 2.4 x 10_9 for GEM-T1. This strongly suggests that the standard deviations
given for these coefficients in GEM-T1 (on average 3.1 X 10-9) are realistic. It
should be noted, however, that the agreement is not so good for higher degrees:
going up to degree 24, rather than degree 23, gives mean differences of

3.9 x 10”7 for GEM 10B and 3.2 x 10> for GEM-T1.

s%0
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Table 10

Comparison of our 15th-order values with
GEM 10B and GEM-T!1 up to degree 24

9= 9=

. 10 bl,iS 10 82’15

GEM 10B GEM~T1 Our values GEM 10B GEM-T1} Our values
15 -19.7 -18.1 £ 3 | -20.5 £ 0.4 -6.4 -8.1 + 3 -6.7 £ 0.5
16 -14.4 -12.5 £ 4 | -13.2 £ 1.2 -27.8 ~32.3 £ 4 | ~26.5 £ 0.8
17 2.5 4.9 £ 1 6.5+ 0.6 4.8 5.7 £ 3.4 £ 0.6
18 -48.3 -37.8 + 4 | ~41.5 £ 1.3 -18.6 -19.8 + 4 | -17.2 £ 0.9
19 -20.6 -18.3 £+ 3 } -16.5 £ 0.7 -15.3 -12.8 £ 3 } ~14.4 £ 0.7
20 -23.9 ~22.7 £+ 3 | -23.3 £ 1.1 4.8 -0.4 £ 3 -1.9 £+ 0.9
21 16.2 16.6 £+ 3 18.5 + 0.5 9.5 15.0 £ 3 12.3 £ 1.1
22 24 .1 27.9 £ 3 23.3 % 1.4 -1.3 3.1 ¢ 3 6.7 £ 1.2
23 15.4 17.7 £ 4 21.4 £ 1.1 4.1 2.3t 4 -1.6 £ 1.5
24 3.1 9.8 t 4 -1.3 £ 1.6 =5.1 -13.5 £ 4 | ~23.5 £ 1.4

For the recent WGS 84 model‘s, values of the coefficients are available
only up to degree 18, and it is possible that the model utilizes our earlier
values; so comparisons are of dubious worth, The eight values of coefficients
of degree 15-18 in WGS 84 differ from the corresponding values in our solutions

by 2.5 x 10—9 on average.

9.2 Coefficients of 30th order and even degree

For 30th order, the models GEM 10B, GEM-T1 and GRIM3-Lt apparently do not
make use of our previous values, and Rapp (1981) uses only the values for & = 30;
so it seems legitimate to make comparisons, which are shown in Table 11 for coef-
ficients up to degree 36. The respective authors estimate the average standard
deviation of GEM-T1, GRIM3-L1 and Rapp (1981) as 5, 3 and 2.59x 10_9 respectively,

while our standard deviations range between 0.9 and 4.0 x 1077,

Our standard deviations are too large to allow any firm conclusions: but the
mean differences between our values and the corresponding values in GEM 10B,
GEM-T1, GRIM and Rapp are 4.2, 6.5, 3.9 and 4.0 x 10_9 respectively (excluding
¢ = 30 for Rapp). These differences would be consistent with accuracies of about
5 x 1072 in GEM-T1 and about 3 x 1072 in the other models, ie in line with the

authors' estimates given in the previous paragraph*.

* The greatest difference is for 532,30 with GEM~T1, which is a satellite-omly
model. A more recent model (PGS 3325), with surface gravity and altimeter data
added, gives 109632 30 = =5.0 £ 1.5 (J.G. Marsh, Private Communication). This
is much closer to oul value.
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Table 11

Comparison of our 30th-order values with
comprehensive models, for 2 £ 36

GEM | GEM~|GRIM3- | GEM ) GEM~|GRIM3-

10B | T1 L1 Rapp | Our values Rapp |Our values

30} -5.2{~1.5] -0.6](-3.3)] -3.2 % 0.91 11.1]-0.4) 7.1 J(7.5)} 7.4 £ 1.0
32| -0.6| 8.3} -6.9| 6.7 | ~8.6 + 1.8 {-0.2] 1.7]| -1.0 | 0.5 | 4.7 £ 1.7
341-11.9|~6.1] -23.0 |-22.9 [-13.3 £ 2.2 1 1.2} 0.0] 0.7 |-0.6 {-5.6 + 2.4
36] -3.9/~1.6| ~7.6| -6.0 | ~3.7 £ 3.1(-0.91-2.0] 6.4 | 4.8 { 5.5 % 4.0

There may be merit in comparing the mean of the four with the corresponding
values in our solution: the average difference is 3.3 x 10-9, which is better than
for any individual model. Though it is impossible to allot a nominal standard
deviation to the mean of the models, a value near 3 x 10-9 would be plausible,
while the mean standard deviation of our values is 2.1 x 10_9; so the observed

mean difference of 3.3 x 10_9 is very satisfactory.

10 REVISED SOLUTIONS AFTER MORE ACCURATE COMPUTATION OF G-FUNCTIONS

10.1 Correction of the lumped harmonics

In all our previous evaluations of the individual harmonic coefficients, we
have worked with the computer programs THROE, SIMRES and PROF, in which the

values of the eccentricity function G (defined in Ref 4) are obtained from

ipq

. : A . 2 . .
an approximation G that ignores terms of order e relative to the main

ipq -
term. Most of the orbits analysed have e < 0.011 , and the error in using Gzpq
instead of Gzpq is very small; but there are some orbits with e > 0.02 for

which the approximation is significantly in error. Recently, A.W. Odell has
written the program GQUAD (described in Ref 4), in which G is evaluated
accurately by numerical integration. We now take the opportunity of replacing
G by G whenever necessary and recalculating the values of the coefficients

derived in section 5 to 8.

The theory for G 1is given in Ref 4, and it is not appropriate to go into
detail here. Briefly, the fitting of the changes iflinclination at resonance
with THROE leads to a numerical value of G15,7,0C‘5 . Pfgviously we have
calculated a (slightly incorrect) lumped harmonic value, 51; say, by taking

~ a

this numerical value equal to G15 7 0C1; . The correct value for the lumped
L ]

harmonic is obviously given by:

S0
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23 t
0,1 20,1 {2
C,5 = Cys 615,7,0/%15,7,0) * (8
Thus the previously derived values of 61; and their standard deviations must
all be multiplied by G /G . A similar procedure applies for the
15,7,0°15,7,0
other lumped harmonics, with appropriate changes of suffix. For example,
1,2 1,2y
Cis = Cys (G16,7,~1/G16,7,—1) : 9

The corrected values of the lumped harmonics, to replace those in Tables 1
and 2, are given in Tables 12 and 13. The correction factor, f say, is always
less than 1. In Table 12 there are 18 orbits with e < 0.011 , and for these
f > 0.99 ; for the orbits that are most accurate, e < 0.005 and £ > 0.999 ,
so that the changes are negligible. For the orbits of higher eccentricity the
corrections are larger but still not significant by comparison with the standard
deviation: the largest is for 1971-106A, but is still less than 107 of the sd.
For the values in Table 13 the correction factor for (q,k) = (1,0) 1is
the same as for (q,k) = (-1,2) . Again the largest change is for 1971-1064,

but is less than 0.2 sd.

10.2 Correction of the Q coefficients

It is not only the lumped harmonics that are affected by the use of é
instead of G : each Q coefficient also needs to be adjusted, because each Q
is the ratio of two G functions: see Ref 4 for details. Specifically Qz’k is
proportional to Gipq/czopoq , where Eo and p  are the lowest values of &
and p that appear. We have previously taken the ratio of these G functions

as Gzpq/GQopoq . Thus we need to multiply each Q, by a factor

G égpq G

g = B, o .o M4 (10)
G £6Pod G
2pq 2pq

where f is the correction factor applied to the lumped harmonic, as before.

It turns cut that £ > 1 and that its value increases with ¢ and with e ; so
its efrect is greatest for low inclination and high eccentricity. Among the
satellites in Table 1, 1964-84A is by far the most strongly affected, as i = 38°
and e = 0.042 . For this satellite the Q factor for the largest term in the

s 15

o 15 is increased by 157 and so some decrease in

lumped harmonic, namely Q23 23
’
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the (rather large) value of 623 15 is to be expected. We have corrected the
’

Q factors for all the orbits with e > 0.011, and the new values are listed in

Tables 18 to 21 (pages 29 and 30). The values of Q for the other satellites

are given in Ref 19.

Table 12
Values of lumped harmonics (6,§)?g1 for the 26 satellites
with 015,7’0 corrected
T K ' ]
i , :z?;r -0y ( 9.0s 1) .Correction
No. ‘Satelllte 1 axis e (IO C15 ) 10 S‘5 i factor
(deg) (km) corr corr £
i
1 165—09A 31.76 | 6857 | 0.007 30890 + 1950 | 13500 + 960 - 0.997
2 | 69-68B 32.97 | 6857 | 0.004 20320 £ 750 | 6270 % 910 0.999
3 |64-84A 37.80 | 6860 10.042 510 + 520 | -1810 £ 1310 0.903
4 | 79-82A 43,60 | 6862 | 0.001 -467 & 34 =767 £ 424+ 1.000
5 !71-308 46.36 | 6869 | 0.011 -395 + 50 © -791 £ 30 0.993
6  74=34A 50.64 | 6872 {0.002 | -430.2 £ 10.0 .~320.9 £ 8.3 1.000
7 :71-58B 51.05 { 6874 | 0.011 =352 % 93% | 246 * 45 0.993
.8 62-15A 1 53.82 | 6876 | 0.022 =360 = 14 -111 ¢ 30 0.972
;9 165-53B ,' 56.04 | 6879 | 0.003 | -233.4 + 6.6% -103 + 34~ 1.000
10 | 68-70A . 56.08 | 6880 ! 0.002 | -213.5 £ 10.8%! -91.1 £ 16.8~* 1.000
11 | 63-24B : 58.20 | 6883 | 0.002 | -110.6 % 5.6 -41.6 £ 4.5 1.000
12 {70-87A ! 62,92 | 6888 [ 0,007 -5.4 ¢ 3.6 ~30.3 % 11,2+ 0.997
13 | 65-14A ' 65.02 | 6892 | 0.003 4.8 £ 2.1 -7.1 £ 2.5 1.000
14 | 77-12B ! 65.49 | 6894 | 0.029 12.8 £ 11.8% 0.7 £ 12.7 0.952 |
15 [ 71-106A i 65.70 | 6895 | 0.045 -3.2 % 37+ 8 + 15 0.890 |
16 | 71-10B ' 65.83 | 6893 [ 0.002 -0.7 £ 4,1 2.4 £ 3.9 1.000
17 [ 71-18B 69.84 | 6900 | 0.040 -34 £ 22+ 9 +£5 0.911
18 | 70-111A 74.00 | 6905 | 0.001 -26.0 £ 1.0 ~5.2 ¢ 1.3 1.000
19 171-13B 74,05 | 6905 ) 0.002 -24.6 £ 1.3 -6.1 ¢ 1.0 1.000
20 | 77-95B 75.82 | 6908 | 0.029 -21.4 * 4.9 -2.9t 5.1 0.952
21 | 67-42A 80.17 | 6918 | 0.007 -23.0 £ 1.6 -8.6 £ 1.3 0.997
22 | 70-19A 81.16 | 6916 | 0.005 -21.0 £ 1.6 -1.1 % 5.2+ 0.999
23 | 67-73A 85.98 | 6925 | 0.025 | -13.4 £ 2.2 ~6.2 £ 3.2 0.964
24 | 71-54A 90.21 | 6930 {0.002 |-16.05 = 0.21 -6.90 £ 0.2t 1.000
25 | 64-52B(H) 98.68 | 6945 | 0.023 -27.4 £ 1.9 1.5 ¢ 7.8+ 0.969
26 | 64-52B(B) 98.68 | 6945 | 0.023 -30.2 + 4.5% -4.3 ¢ 3.1 0.969
27 166-63A 144,16 | 7009 | 0.003 36900 £ 9700 12200 + 9400% 1.000

Key: #* Standard deviation x 2
+ Standard deviation » 4

$%0




+ Standard deviation x 4
V Standard deviation x 10

10.3 Revised solutions for 15th order

Table 13
- -\1,0 _ 1,2
Values of lumped harmonics (C,S)15 and (C,S)15
after correction of G
- 1.0 7 CorFec—
Satellite (10961’()) (1096 1'2) (1095 ) (1095 1’) tion
15 15 15 15 factor
corr corr corr corr £
65-09A 52900 * 182004 -340 % 510 -5000 = 9700 200 £ 790 0.998
79-82A -860 + 150 =234 + 34 -1930 ¢ 160 185 + 268+ 1.000
71-30B -418 + 93 -200 £ 60%* ~1020 £ 670V 204 £ 80+ 0.995
74-34A -211.,2 £ 24,9 | -3.0 + 8.6 128.4 + 20.2 | 63.5 % 3.4 1.000
i 71-58B Yo—464 = 231+ -50 = 92+ 252 £ 119% 45 + 14 0.995
g 62-15A -75 + 18 148 £ 59+ 169 £ 75% 11 £ 33 0.982
65-53B 18 + 17 106.9 + 8.7 57 % 23 2.4 % 8.1 1.000
68-70A 20.4 £ 10.2 74.4 % 23,2+ | 39.3 = 15,2% 38 + 44V 1.000
63-24B 59.3 ¢+ 10.2 (101.5 + 13.0% | 26.8 + 7.4 12.9 £ 16.4+ 1.000
65-14A 74.8 + 5.8 1-12.4 % 3.7 -9.6 £ 4.4 [-29.4 % 3.0 1.000
71-106A 47 + 22 . =62 t 37% -51 & 65V -18 £ 22 0.927
71-10B - 35,1 % 23.4%:-20.0 ¥ 10.7 [-13.8 £ 11,0 }-18.9 + 10.3 1.000
70-111A  § -18.0 £+ 3.3  -46.5 £ 2.7 ~44 £ 25V |-40.5 % 4.0 1.000
71-13B ? -19.8 + 1.8 -45.5 % 2.0 -24.8 £ 0.7 |-35.2 ¢ 1.0 . 1.060
77-958 { -3 £ 25  -61 % 15 ' -4 * 21% -45 & 17 © 0.969
67-42A -54.6 £ 6.4% ~131 & 21% 1—37.1 + 2.6 -97 + 18% i 0.998
70-19A l -26 * 41V -128 £ 29 . =15 % 20+ -130 ¢ 37 0.999
67-73A i -85 % 37 -119 * 64 . 82 % 117*% | =171 £ 168% 0.977
71-54A ; -92 + 48 -62.9 £ 2.6 © =170 £ 112% [-53.4 * 1.6 1.000
64-52B(H) -86 = 27+ -3+ 10% -36 £ 8 -33 £ 11 0.980
64—525(3)] =77 £ 27+ -41 £ 34V I -68 £ 21+ |-25.6 + 8.7 0.980
Key: * Standard deviation x 2

With these corrected Q factors and the revised values of all the lumped

harmonics given in Tables 12 and 13, we have derived revised solutions, taking

the same relaxations in the standard deviations as before.

are 0.84 for

for odd degree are given in Table 14: the values of ¢

0.90 for S .

by 0.7 sd, is for 109(-:23 15 * which decreases from 21.4
’

There is also a ~hange of about 0.8 sd in the poorly-determined C

average change is 0.23 sd.

+ 1.1 to 20.6 ¢

35,15 °
The standard deviations in Table 14 are on average

The new solutions
C and

Comparison with Table 3 shows that the most significant change,

1.0.
The

107 lower than in Table 3, none being bigher: this can be read either as luck

or as an indicaticn that the corrections have led to better values for the

coefficients,

U4
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The revised solutions for even degree are given in Table 15; the values of
€ are 0.92 for C and 0.82 for S . The values of the coefficients and their
standard deviations differ only trivially from those in Table 5, the largest

9

change being 0.2 x 10”7 for The average change is 0.03 sd.

536,15
The changes are too small to produce significant changes in Figs 1 to 3,

and the weighted residuals are similar to those in Tables 4 and 6.

Table 14
Revised solutions for odd-degree Cﬁ,15 and 82,15
9~ 9

L 10 Ce,15 10 81,15

15 | -20.4 £ 0.4 -6.7 £ 0.4
17 6.6 £ 0.5 3.4 £ 0.6
19 | -16.4 £ 0.6 | -14.2 £ 0.7
21 18.3 £ 0.5 12.0 + 1.0
23 20.6 £ 1.0 -1.4 £ 1.4
25 -5.8 £t 1.6 1.9 + 2.0
27 -3.9 + 1.3 9.7 £ 1.8
29 -8.3 £ 1.2 =5.4 £ 1.4
31 17.1 £ 2.2 -2.7 £ 3.0
33 -1.5 ¢ 2.4 -9.4 £ 3.0
35 -5.3 % 3.4 2.4 £ 4.3

Table 15
Revised solutions for even-degree Cl,15 and 32)15
9= 9

2 10 CZ,IS 10 51,15

16 1 -13.2 £+ 1.2 {1 -26.5 £ 0.8
18 | ~-41.4 £ 1.3 | -17.2 £ 0.9
20 | -23.2 £ 1.1 -1.9 £ 0.9
22 23.2 £ 1.4 6.7 t 1.2
24 -1.4 £ 1.6 | =23.5 £ 1.4
26 { -14,7 £ 1.7 5.2 £ 1.5
28 | -10.6 £ 1.6 1.1 %2 1.4
30 -8.4 % 2.5 | -14.9 ¢ 1,7
32 19.6 = 4.1 2.4 £ 2.6
34 -2.3 t 4.1 13.9 £ 3.2
36 10.7 £ 4.5 -9.4 ¢ 2.9

S0
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10.4 Revised solutions for 30th order

Nearly all the orbits which yielded values of lumped 30th-order harmonics
have e < 0.007 , and the corrections to the lumped harmonics are scarcely
significant. For 1964-52B with e = 0.023 , however, there is a reduction of 11%.

The corrected values of the lumped harmonics are given in Table 16.

The revised 30th-order solutions, with the Q values corrected for
1964-52B only, are given in Table 17. The values of S in Table 17 are the
same as in Table 8, and so is € , though one standard deviation has decreased.
For C , the value of € decreases from 0.88 to 0.86, and the standard deviations
are on average 37 lower than in Table 8. The changes in the residuals and in

Fig 4 are too small to be worth recording.

Table 16
_ _\9,2
Values of even-degree lumped harmonics (C,S)30
with G corrected
Correc-
0,2 0,2 .
Satellite GOQE ’ ) QOQE ’ ) e tion
30 30 factor
corr corr £

1974-34A 596 t 557 678 £ 650 0.002 0.999
1968-70A =34 t 149 -623 + 212% 0.002 0.999
1963-24B 46 + 106 -253 + 88 0.002 0.999
1965-14A -46 + 23 -37 ¢+ 19 0.003 0.998
1971-10B -54 ¢ 27 59 + 80% 0.002 0.999
1970-111A 19.2 £ 4.9 4.1 %2 4.4 0,001 1.000
1971-13B 27.1 £ 5.5 6.0 + 3.3 0.002 0.999
1967-42A -9.0 £ 4.5 -4,9 £ 10,9% 0.007 0.989
1971-54A -9.80 % 0.58 8.99 £ 0.75 0.002 0.999
1964-52B(H) 20.3 ¢ 7.0 34 £ 367+ 0.023 0.890
1964-52B(B) 35 £ 19% 46 + 36+ 0.023 0.890

Key: % Standard deviation x 2
+ Standard deviation x 4

Table 17

Revised solutions for even-degree Cl,30 and 82’30

9= 9=

4 10 C2,30 10 51’30

30 ~3.3 0.9 7.4 £ 1.0
32 ~8.4 £ 1.7 4.7 £ 1.7
34 | -13.0 £ 2.1 | -5.6 ¢ 2.4
36 ~3.5 + 3.1 5.5 % 3.9
38 7.0 £ 3.1 3.8 4.0
40 4.7 £ 2.5 | 4.0 £ 3.1




1 CONCLUSIONS

The addition of two new orbit analyses, particularly that for the satellite
1965-09A, has led to great improvements in the standard deviations of many of the
15th-order coefficients of even degree: for degree 24, 26, 28 and 30 the standard
deviation is reduced by a factor of 3.1 on average; and for degree 32, 34 and 36
by a factor of 1.4 on average. The 15th-order coefficients of odd degree are not
significantly changed as a result of the addition of the one new satellite,
1968~70A. The new values for .the 15th-order coefficients with G corrected, as
given in Tables 14 and 15, have sd £2.0 x 10_9 for all the 30 coefficients of
degree 15,16,17,...29, and the average standard deviation of these 30 coefficients
is 1.15 x 10-9, equivalent to an error of 0.7 cm in geoid height. This precision
is much better than has been achieved for any other order for so many coefficients.
Nominally the most accurate of our coefficients is 615,15 = (-20.4 £ 0.4) x 10‘9,

where the standard deviation is equivalent to less than 0.3 cm in geoid height.

With the 30th~order coefficients we only have solutions for even degree,
and only those of degree 30 and 32 are up to the standard of the previous
paragraph. These four values have a mean standard deviation of 1.3 x 10_9,

equivalent to an error of 0.8 cm in geoid height.

Comparison with comprehensive geoid models, in which the coefficients are
nominally less accurate than our values, shows satisfactory agreement. For
15th order, only the GEM modelss’14 are thought to be independent of ours; for
degree 15-23, GEM 10B differs from the corresponding values in our solution by

3.1 % 10—9 on average, and for GEM-T1 the corresponding value is 2.4 x 10-9.

This suggests that the nominal standard deviation of GEM-T1, 3.1 x 10-9 on
average, is realistic. For 30th order and degree 30,32,34 and 36, our values
differ from the corresponding values given by the mean of four models by

-9
3.3 x 10

on average. Again this suggests that the nominal standard deviations of the

; but for the models individually the differences are near 4 x 10-9

models, mostly between 3 and 5 x 10-9, are quite realistic.

S%0
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Fig 2 Values of F16,15,ac s and F16‘15'.,c115'2 from Table 2,

with the curves given by the coefficlents In Table 5 and I
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Fig 3
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Fig 3 Values of F1s,15,ss15 and F1e,15,7s1s from Table 2,
with the curves given by the coefficients In Table 5§ and
by GEM 10B




Fig 4
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Flg 4 Values of Fso,so,mcso and Fso,ao,usao from Table 7,

with the curves given by the coefficients in Table 8 and
by GEM 10B
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be determined most accurately by analysis of satellite orbits which experience 15th-
order resonance. The results from two recent resonance analyses, for 1965-09A and
1968-70A, have here been added to those previously available, to produce an improved
evaluation of 44 coefficients of order 15 and degree 15-36, and 12 coefficients of
order 30 and even degree 30, 32, . . . 40.

Compared with previous results, the new evaluation shows a great improvement .n
the standard deviations cf many of the 15th-order coefficients of even degree, thanks
largely to the contribution of 1965-09A at inclination 31.8°: for the coefficients of
degree 24,26, 28 and 30, the standard deviation (sd) has been reduced by a factor of

3.1 on average; and for degree 32, 34 and 36 by a factor of 1.4 on average. For the
;other ccefficients ~ those of 30th order, and odd-degree 15th order - the changes are
irelatively small. In the new 15:h-order solution, all the 30 coefficients of degree
!15—29 have sd £ 2.0 x 1072, and the average sd of these 30 values is equivalent to

;an error in geoid height of 0.7 cm.




